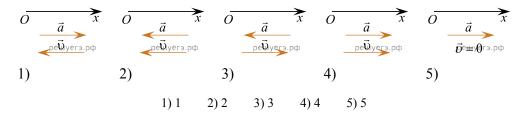

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

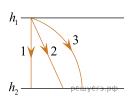
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты материальной точки от времени её движения. Начальная координата x_0 точки равна:

1) 12 m 2) 10 m 3) 8,0 m 4) 6,0 m 5) 5,0 m

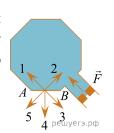

2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 5.0$ с он проехал путь $s_1 = 60$ м, то за промежуток времени $\Delta t_2 = 7.0$ с велосипедист проедет путь s_2 , равный:

1) 64 m 2) 70 m 3) 77 m 4) 84 m 5) 90 m


3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $\langle v_I \rangle = 33$ км/ч, второй — $\langle v_2 \rangle = 38$ км/ч, третий — $\langle v_3 \rangle = 25$ км/ч, то всю трассу велосипедист проехал со средней скоростью $\langle v \rangle$ пути , равной:

1) 31 км/ч 2) 32 км/ч 3) 33 км/ч 4) 34 км/ч 5) 35 км/ч

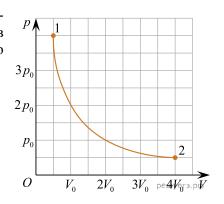
4. Кинематический закон движения материальной точки вдоль оси Ox имеет вид: $x(t)=5-9t+4t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени t_0 = 0 с показаны на рисунке, обозначенном цифрой:



5. Тело перемещали с высоты h_1 на высоту h_2 по трём разным траекториям: 1, 2 и 3 (см. рис.). Если при этом сила тяжести совершила работу A_1 , A_2 и A_3 соответственно, то для этих работ справедливо соотношение:

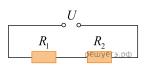
1) $A_1 > A_2 > A_3$ 2) $A_1 < A_2 < A_3$ 3) $A_1 > A_2 = A_3$ 4) $A_1 = A_2 < A_3$ 5) $A_1 = A_2 = A_3$

6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

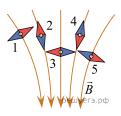


7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

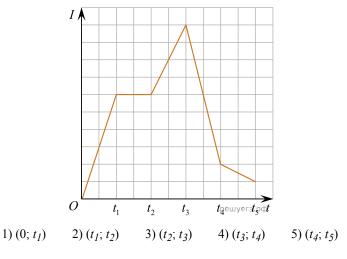
Измерение	Температура, К	Давление, кПа	Объем, л
1	280	150	15,5
2	310	150	17,2
3	340	150	18,8
4	370	150	20,5
5	400	150	22,2


Такая закономерность характерна для процесса:

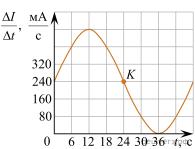
- 1) изохорного
- 2) адиабатного
- 3) изотермического
- 4) изобарного
- 5) циклического
- **8.** Если концентрация молекул идеального газа $n = 2.0 \cdot 10^{25} \,\mathrm{m}^{-3}$, а средняя кинетическая энергия поступательного движения молекул газа $\langle E_{\kappa} \rangle = 3.0 \cdot 10^{-21}$ Дж, то давление p газа равно:
- 2) 40 кПа 3) 20 кПа
- 4) 15 κΠa
- 5) 10 κΠa
- **9.** На рисунке показан график зависимости давления p одноатомного идеального газа от его объёма V. При переходе из состояния 1 в состояние 2 газ совершил работу, равную A = 9 кДж. Количество теплоты Q, полученное газом при этом переходе, равно:


- 1) 1 кДж
- 2) 4 кДж
- 3) 5 кДж
- 4) 7 кДж
- 5) 9 кДж
- 10. Физической величиной, измеряемой в амперах, является:
 - 1) электрическое сопротивление
- 2) сила тока 3) индуктивность 5) потенциал
 - - 4) электрическое напряжение
- 11. Два одинаковых маленьких проводящих шарика, заряды которых $q_1 = 26$ нКл и $q_2 = 14$ нКл находятся в воздухе ($\varepsilon=1$). Шарики привели в соприкосновение, а затем развели на расстояние r=120 см. Модуль силы F электростатического взаимодействия между шариками равен:

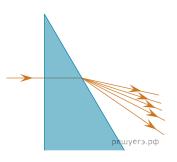
- 1) $9 \cdot 10^{-5} \text{ H}$ 2) $7 \cdot 10^{-5} \text{ H}$ 3) $5 \cdot 10^{-5} \text{ H}$ 4) $3 \cdot 10^{-5} \text{ H}$ 5) $1 \cdot 10^{-5} \text{ H}$
- 12. На рисунке изображен участок электрической цепи, напряжение на котором U. Сопротивление резистора R_1 в четыре раза больше сопротивления резистора R_2 ($R_1=4R_2$). Если напряжение на резисторе R_1 равно U_1 , то напряжение U равно:



1) $5U_1$ 2) $4U_1$ 3) $2U_1$ 4) $\frac{5}{4}U_1$ 5) $\frac{4}{3}U_1$


13. В магнитное поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:

14. На рисунке представлен график зависимости силы тока, проходящего по замкнутому проводящему контуру с постоянной индуктивностью, от времени. Интервал времени, в пределах которого значение модуля ЭДС самоиндукции | | максимально:



15. На рисунке изображён график зависимости скорости изменения силы тока $\frac{\Delta I}{\Delta t}$ в катушке от времени t. Если индуктивность катушки L = 30 мГн, то в момент времени t = 24 с модуль ЭДС самоиндукции в катушке равен:

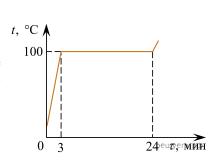
1) 6,0 MB2) 7,2 mB 3) 14 mB 4) 18 mB 5) 24 mB

16. На боковую поверхность стеклянного клина, находящегося в вакууме, падает параллельный световой пучок, содержащий излучение, спектр которого состоит из пяти линий видимого диапазона. Длины волн излучения соотносятся между собой как $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4 > \lambda_5$. Вследствие нормальной дисперсии после прохождения клина наибольшее отклонение от первоначального направления распространения будет у света с длиной волны:

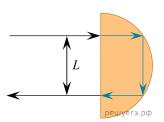
1)
$$\lambda_1$$
 2) λ_2 3) λ_3 4) λ_4 5) λ_5

17. Атом водорода при переходе с шестого энергетического уровня ($E_6=-6,04\cdot 10^{-20}~{
m Дж}$)

на четвертый (
$$E_4=-1,36\cdot 10^{-19}\,$$
 Дж) испускает фотон, модуль импульса p которого равен: 1) $7,03\cdot 10^{-27}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 2) $1,61\cdot 10^{-27}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 3) $6,03\cdot 10^{-28}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 4) $2,52\cdot 10^{-28}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 5) $8,83\cdot 10^{-29}\,\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$

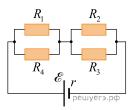

18. На рисунке изображены два зеркала, угол между плоскостями которых $\beta = 75^\circ$. Если угол падения светового луча AO на первое зеркало $\alpha = 40^\circ$, то угол отражения этого луча от второго зеркала равен:

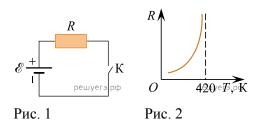
Примечание. Падающий луч лежит в плоскости рисунка.


1)
$$35^{\circ}$$
 2) 50° 3) 75° 4) 90° 5) 105°

- **19.** В момент начала отсчёта времени $t_0 = 0$ с два тела начали двигаться из одной точки вдоль оси Ox. Если зависимости проекций скоростей движения тел от времени имеют вид: $v_{1x}(t) = A + Bt$, где A = 4 м/c, B = 1.6 м/c² и $v_{2x}(t) = C + Dt$, где C = -12 м/c, D = 2.1 м/c², то тела встретятся через промежуток времени Δt , равный ... **c**.
- **20.** К бруску массой m = 0,50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 25 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l = 17 см). Если длина пружины в недеформированном состоянии $l_0 = 13$ см, то модуль ускорения бруска равен ... дм/ c^2 .
- **21.** На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Длина стороны кубика a=10 см. Если минимальный объем воды ($\rho_{\rm B}=1,00~{\rm г/cm}^3$), которую нужно налить в сосуд, чтобы кубик начал плавать, $V_{\rm min}=214~{\rm cm}^3$, то масса m кубика равна ... Γ .
- **22.** Два тела массами $m_1 = 4,00$ кг и $m_2 = 3,00$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u = 15,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **23.** По трубе, площадь поперечного сечения которой $S=5,0~{\rm cm}^2$, перекачивают идеальный газ ($M=44\cdot 10^{-3}~{\rm кг/моль}$), находящийся под давлением $p=392~{\rm кПa}$ при температуре $T=280~{\rm K}$. Если газ массой $m=40~{\rm kr}$ проходит через поперечное сечение трубы за промежуток $\Delta t=10~{\rm muh}$, то средняя скорость $\langle \upsilon \rangle$ течения газа в трубе равна ... ${\rm M/C}$.
- **24.** Вода $\left(\rho = 1, 0 \cdot 10^3 \ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}}\right)$ объемом $V = 250 \ \mathrm{cm}^3$ остывает от температуры $t_1 = 98 \ ^{\circ}\mathrm{C}$ до температуры $t_2 = 60 \ ^{\circ}\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m = 1, 0 т, то они могут быть подняты на максимальную высоту h, равную ... дм.
- m=1,0 т, то они могут оыть подата 25. К открытому калориметру с водой (L=2,26 $\frac{\text{МДж}}{\text{кг}}$) ежесекундно подводили количество теплоты Q=97 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... Γ .

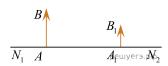
26. Узкий параллельный пучок света падает по нормали на плоскую по-


верхность прозрачного
$$\left(n=\frac{4}{3}\right)$$
 полуцилиндра радиусом $R=3\sqrt{3}$ см


выходит из неё параллельно падающему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и выходящим пучками света равно...см.

Примечание. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.

- **27.** Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}\right)$ проводнике, масса которого m = 30 г и сопротивление R = 1,3 Ом, от времени t имеет вид $I = B\sqrt{Dt}$, где B = 60 мА, D = 2,2 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t = 3,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **28.** Участок цепи, состоящий из четырех резисторов (см. рис.), сопротивления которых $R_1=1,0$ Ом, $R_2=2,0$ Ом, $R_3=3,0$ Ом и $R_4=4,0$ Ом, подключен к источнику тока с ЭДС $\epsilon=20,0$ В и внутренним сопротивлением r=2,0 Ом. Тепловая мощность P_3 , выделяемая в резисторе R_3 , равна ... **Вт**.



- **29.** В идеальном LC-контуре, состоящем из катушки индуктивности $L=27~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,50~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=54~{\rm M}{\rm K}\square{\rm K}$, то в момент времени, когда заряд конденсатора $q=4,5~{\rm M}{\rm K}$ Кл, сила тока I в катушке равна ... мА.
- **30.** В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon=10~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T\geqslant420~\mathrm{K}$ (см.рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{ДЖ}{K\Gamma \cdot K}$, масса резистора m=2,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~\mathrm{K}$, то после замыкания ключа К через резистор протечет заряд q, равный ... Кл.

31. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

32. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{
m cyt.},~{
m to}$ $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... сут.